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THE RANGE RATE ERROR DUE TO THE AVERAGING 

TECHNIQUES OF DOPPLER MEASUREMENTS 

B. Kruger 

ABSTRACT 

2/U8 
The averaging error in slant range rate measurements, based on 

Doppler frequency integration over a finite time, has been analyzed. This 
e r r o r  is of sucha magnitude thata correction is required. For example, 
in a near circular earth orbit the e r ro r  is 0.12 m/s for  370 km (200 nm) 
orbitaltitude and0.5m/s for 185 km (100 nm) orbit altitude if  an integra- 
tion time of l sec. is used. Means of correction, added noise due to cor- 
rection, and the residual e r r o r  after correction are discussed. Special 
emphasis is given to the three point correction, which is shown to be 
adequate in most applications. In the above case the e r r o r s  a r e  reduced 
to 0.0001 m/s and 0.0024 m/s respectively. 
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THE RANGE RATE ERROR DUE TO THE AVERAGING 

TECHNIQUES OF DOPPLER MEASUREMENTS 

l -  

l -  

I :  

INTRODUCTION 

A finite time is always required €or frequency measurements. The Doppler 
frequency shift can therefore not be measured instantaneously. Instead, the 
Doppler shift is integrated over a finite time T. This integral is proportional to 
a finite increment in range AR. The Doppler measurement, therefore, yields the 
average range rate  Ra during the time interval T 

The actual range rate at time t*  is R. The difference AR between R and Ra 

and suitable means for correction a r e  discussed in this paper. The omission of 
the correction for AR will introduce an e r r o r  in the interpretation of the measure- 
ments and this e r r o r  is referred to as the averaging e r r o r  in this paper. 

1. THE AVERAGING RANGE RATE ERROR 

The averaging slant range rate  e r ro r  AR can be calculated by expanding R 
in a Taylor series [ 13 around t = to 

*All time in this paper refers to the spacecraft transponder rather than to the ground receiver in 
order to avoid corrections for propagation delay in this paper. The effects of propagation delay 
wil l  be treated in a coming paper. 

'1 



c 
- .' , 

At = T12 At = T j 2  

1 Figure 1-The Integration Lt I ntervo I 

to - T/2 t0 to + T/2 

where 

t = to etc. 
R, = R  

If t o  is the middle of integration interval T, then AT = T/2as  shown in Figure 1. 
The change in R during T is 

and applying equation (1.1) we obtain 

A R = R o  + R  * 0 2  - + - R  T 2 1 .. 0 (T)2 2 +gRo l a - .  (T)3 2 + . . .  

T 1  

or  

1 ... 
A R = R o T + - R o T 3  + . . .  

24 

and hence 

~~ 

AR - 1 ... 
R = - = R o  + - R ,  T2 + . . .  
" T  24 

2 

, 

(1.3) 



. Uping Ra instead of R means that an e r ro r  AR is introduced 

c 

. . .  1 ... 
AR = R - Ra - - R O T 2 -  . . .  

2 4  (1.4) 

It is seen from the above derivation, that all even derivatives R,, d4R/dt4, 
etc. disappear in equation (1.4) if and only if, to  is chosen in the middle of the 
integration interval T. Also the coefficient for the third derivative in equation 
(1.4) has a minimum for  this choice of t o .  We therefore conclude that inter- 
preting Ra as R in the middle of the integration interval minimizes Ak 

The averaging e r r o r  is of such a magnitude that a correction is required 
in many cases. A complete correction i s ,  of course, not possible. A practical 
limitation is that only one correction term is desirable, i.e., only the third 
derivative is used for  correction and the fifth and higher order derivatives a r e  
neglected. A theoretical limitation is that all derivatives a r e  contaminated with 
noise and a correction for AR will therefore increase the noise in R. 

A practical important case is the circular orbit. A circular orbit will there- 
fore be used as a vehicle to demonstrate the magnitude of AR and of the residual 
e r r o r  due to the neglect of the fifth and higher order derivatives. An overhead 
pass is chosen, because this is the worst case. 

2. THE AVERAGING ERROR IN A CIRCULAR ORBIT* 

A circular overhead orbit is shown in Figure 2. From Figure 2 we obtain 

(2.1) R2 = r2 + ( r  + h)2 - 2 r  ( r  t h) c o s  B 

( r  -t h)2 = r2 + R 2  + 2 r R  s i n  E (2.2) 

From these equations d3R/d03 can be derived as shown in Appendix I. 

*This c a s e  i s  treated in Ref. (3, but due to analytical errors the results are not applicable. 
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R = Slant range 
E =  Elevation angle 
8 =Central angle 

GODDARD SPACE FLIGHT CENTER 
SYSTEMS ANALYSIS OFFICE 

Fib 1965 

Figure 2-Orbiting Geometry 

In a circular orbit 6 is constant, therefore, 

where 
from Appendix I, 

and 6 a r e  derivatives with respect to time. AR is then, using the results 
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provided 

2 2h sin e > > -  

For E = 0 

With 

r 

i 3  T2 r nR = 
24 

(r t- h)3/2 

where ,LL = the gravitational parameter, we obtain 

provided s i n 2  E >> _. 2h 
r 

I d3R/d031 is calculated in Appendix 1, equation (A-11). Using this value, max 
we obtain 

I AR lmax occurs for 

sin E =,/= 

5 



Let us  use the notation AR,for the averaging e r r o r  for a "standard" 
circular earth orbit with 

h, = 1.85 km ( =  100 nm) 

and a ffstandardff integration time 

To = 1 s  

The graph AR, vs. the elevation angle E is shown in Figure 3. Inspecting Equa- 
tion (2.7), we find that 

AR CCI T2 

f o r - c o r r e c t i d n  h t e r m s  
r 

Fo r  other h and T values than the "standard" values, we thus have 

(2.10) 

Figure 3 shows IAR,lmax = 0.5 m/s. I AROlmex occurs at approximately 63' 
I elevation angle, which is in the region most important for tracking. 

A correction for AR will be required in many applications. If only the third 
derivative is used, as in Equation (1.4),  a residual e r r o r  will remain. The 
residual e r ro r  is analyzed in the next chapter. 

3. THE RESIDUAL ERROR 

Terms containing d5R/d t5 and higher derivatives have been neglected in 
derivation of equation (2.4) and (2.8). In order to estimate the residual e r ro r ,  
we will find an upper bound for the magnitude of the term containing d5R/dt5 . 
Including one more term in equation (1.4) yields 

6 



0.6 

0.4 

0.3 

0.2 

0.1 

0 

1 I I 

E 

Computing AR for other h and T values, use 
A i -  (ho/h) 2 (T/TofARo 

GODDARD SPACE FLIGHT CENTER 
SYSTEMS ANALYSIS OFFICE 

Fob 1965 

Figure 3-Averaging error AR vs elevation angle E for circular earth over 

head orbit with h o =  185 km (=loon. mi.) integration time To = 1 sec. 

Using 6, for the term containing d5R/dt5we obtain 

r 1 d 5 R  

7 

(3.1) 



In Appendix I, Equation (A-ll) ,  it is shown that 

- d5R 

d 8' 
5 23 .6 -  r5 

h4 

for an overhead pass. Hence 

o r  

.5/2 r 4  

For  an earth orbit with h = 185 km, the residual e r r o r  is 

The upper bounds 16, I m a x  vs. T for  overhead earth orbits are shown in Figure 4 
with h as parameter. It is seen that 6, can be neglected for T = 1 sec. But for  
T = 3 sec., 6, is more than 0.02 m/s  for  h = 185 km. Figure 4 thus clearly indi- 
cates the upper limit for the integration time. These values a re ,  however, very 
optimistic because of the following reasons. 

The derivation of the residual e r r o r  in this chapter was based on the assump- 
tion that d3R/dt3 is known accurately. d3R/dt3 is generally not known, but can 
be determined from a number of consecutive measurements. A minimum number 
of three measuring points is needed in order to determine d3R/d t 3 .  Three con- 
secutive measuring points can therefore be used for the correction of the averag- 
ing e r ror .  d3R/dt3 is, however, only determined to a certain accuracy by three 
(or any other finite number) measuring points and an increase in the residual 
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1 . 

e r r o r  can therefore be expected. In the next chapter the residual e r r o r  for the 
three point correction is analyzed and found to be 9 times larger than the theo- 
retical residual e r r o r  as given by equations (3.3) through (3.5) and as shown in 
Figure 4. The residual e r r o r  for the three point correction is shown in Figure 7 
and 8. 

I%l,, 
4 x  I6 

3 x 1 6  

2 x  lo-; 

I O P  

0 
0 .a 5 6 7 

Integration time T (sec) GODDARD SPACE FLIGHT CENTER 
SYSTEMS ANALYSIS OFFICE 

Fob 1965 

Figure 4-Max. residual error IS, I m a x  after correction for d3R/dt3. 18, l m O x  
i s  due tonegtectingd5R/dt5. d3R/dt3 i s  assumed to be accurately known. 
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4. THREE POINT CORRECTION 

It was assumed in the previous chapters that the third derivative of R is 
known. This is generally not the case,  but from three consecutive measurements 
R can be calculated and AR can be corrected for. The correction equation, the 
increase in noise, and the residual e r r o r  for the three point correction are 
discussed in this chapter. 

The Correction Equation 

The equation fo r  the three point correction can be obtained in the following 
way. It is assumed that three consecutive measurements a r e  made with repeti- 
tion time TI as shown in Figure 5. The measured average range rates are Ral , 

and Ra3 respectively. The integration time is assumed to beT for all  three 
measurements. This is not strictly true for the N-counting technique (3) in which 
T is a function of Re . During three consecutive measurements the variation in 
T is, however, small  enough to be neglected. It is shown in Appendix 11, Equation 
(A-33) that under the above conditions the range rate at time ( to + 7 )  is 

'a2 9 

r 
(4.1) 

where 6, and 6 ,  are the residual errors due to the neglection of fourth and fifth 
order  terms. It is also shown in Appendix 11 that 

1 d4R s = - -  
d t 4  

(4.2) 

10 



and 

6 1 d5R 7 T4 --- 
- 24 d t 5  

Figure 5-Three point correction based on three consecutive measurements 

The Residual Error 

It is shown in Appendix I that for a circular overhead path 

and 

For a circular  orbit d e / d t  is constant and therefore 

(4.5) 

dnR - d"R 

d t n  d e n  
-- 

(4.6) 
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Using Equation (2.6) 

and Equations (4.2), (4.3), (4.4), (4.5), and (4.6), the upper bounds for the residual 
e r r o r s  can be obtained. 

which also can be written 

I s 4 1  b41max 

For a circular earth orbit withp = 3.99 1014 m3 /s2 , r = 6.38. lo6  m, T, = 1s 
and h = 185 km we obtain 

T2 r2 16 I -0.263 
4 msx 

Tl 

IS5Imax = 0.0212 1 TZ 7 T4 
12T: 240Tf 

(4.9) 

(4.10) 
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Equations (4.9) and (4.10) show the relationship between the residual e r r o r s  
and the times T ,  T,, and 7. The equations can also be shown graphically. Figure 
6 shows the residual maximum e r r o r s  18, l m a X  and 16, l m a x  for the case that R 
is referred to the time T. For convenient reference, the total measuring interval 

the middle of the measuring interval, then 18, I max = 0. Fo r  other 7 values 
I 84 1 max increases and reaches a maximum at approximately T = *0.6 TI and 
decreases to zero at approximately 7 = A1 TI. The solid graphs a r e  for the 
case  T= TI and the. dotted for T = 1 /2  TI. The graphs a r e  computed for a circular 
orbit and an overhead pass with an altitude of 185 km and TI = 1 sec. 

1 is shown at the bottom of Figure 6. It is seen, that if 7 = 0, i.e. R is referred to 

. 

It is seen from Figure 6 that R should be referred to the middle of the measur- 
ing interval, Le. T = 0, because IS41max is zero. The two other zeros at T = 
k1.l T, are functions of T and the slopes of the curves are very steep in the 
neighborhood of these two zeros. Small variations in T o r  T, will therefore 
produce relatively large residual errors .  If, for  instance, N-counting techniques 
[31 are employed, considerable variations in T have to be expected. 

W e  see also from Figure 6 that there is some residual e r r o r  1851 for 7- = 0. 
Equation (4.8) shows that I 8, I 
of IS51max for increasing T, is shown in Figure 7 for  T = 0, T = T, and h as a 
parameter. For h = 185 km, I Z 5 l r n a x  is 4*10-* m/s  if the integration time 
T is 2 seconds. This residual e r r o r  exceeds already the accuracy claimed for 
some range rate systems. Figure 8 shows 18, I m a x  vs. h with TI a s  parameter 
for  the case T = TI. The rapid increase of 16, I m a x  for low values of h is evident 
from this graph. 

is proportional to ( TI), . The rapid increase 

The R. M. S. Noise 

The total R. M. S. noise qt  after correction is obtained by adding the noise 
from each measurement in a R. M. S. sense. If we write Equation (4.1) in the 

form 

where 

av = 1 c 
(4.11) 

(4.12) 
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SYSTEMS ANALYSIS OFFICE 

F i b  1965 

Figure 6-Three point correction of R(t, t 7). Relative noise v t / q a n d  max. residual errors 
IS, lmax and lb5 lmax after correction due to neglecting 4th and 5th order terms. 
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Figure 7-Three point correction of R(t,) max. residual error IS, l m D x  due to neglecting 
5th and higher order terms. T = T , .  
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Figure 8-Moximum residual error IS, Imax after three point correction vs. oltitude h for the case 

of a circular orbit and an overhead pass. R is  referred to the mid point of the meosuring 

intervols ( ~ ~ 0 )  and the integration time i s  equal to the repetition time of the measurements (T =T,). 
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we obtain the total noise 

7, = rl q (4.13) 

assuming that each measurement has the same noise 7. The ratio q t / q  is shown 
in Figure 6 for two values ofT: T = T, and T = 1/2 T I .  It is seen that the noise 
increases 8.6% for T = TI and 7- = 0. The decrease of R. M. S. noise of 19% at 
7 2 0.7 TI can generally not be utilized because of the large residual e r r o r  / b , l .  

5. CONCLUSIONS 

It has been shown that the averaging e r r o r  for a circular earth orbit is 0.5 
m / s  for 1 second integration time and 185 km orbit altitude. The averaging 
e r r o r  is proportional to the square of the integration time and could therefore be 
reduced by shortening the integration time. The disadvantage of shortening the 
integration time is the increase in other e r r o r s  such a s  quantization e r rors .  
The averaging e r r o r  can also be reduced by applying corrections. A three point 
correction, based on three consecutive measurements, can reduce the residual 
e r r o r  to below O.Olm/s,provided that the corrected R is referred to a time cor- 
responding to the middle of the three measurements. The noise is shown not to 
increase more than 8.6% in this case. The three point correction is therefore 
adequate in most applications. 

The time to which R is referred is rather critical in a three point correction. 
If the integration time varies o r  is not known, then a four or  five point correction 
may have to be used. 
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APPENDIX I 

Derivation of R'" 

Differentiating equation (2.1) with respect to 0 yields 

RR' = r ( r  t h) s i n  B 

(R')2 RR" = r ( r  t h) cos  8 

3R'R"  .+ RR"'= - r ( r  t h) s i n  e 

I thus 

From equation (A-1) and (2.3) 
, 

R' = r cos  E 

is obtained. Solving for R", using equation (2.1) and (A-2) 

1 
R I1 2 

R 2 

r2 s i n 2  E t rh  t - h 2  
_ -  R =  

hence 

r 2  s i n 2  E t r h  
''I R = - r  

R 2  

18 

(A-4) 

(A- 5) 

(A-6) 

(A-7) 



* &  

1 Equation (2.2) can be solved for 1/R 

1 

R 2 h r  t h’ 

r s i n e  t Jr‘ s in’  E t 2 h r  t h2 - =  

and 

1 

R’ (2 hr t h’)’ 

2 r’ s in ’  E t 2 h r  t h’ + 2 r s i n  E Jr’ s in ’  E t 2 h r  t h‘ - - -  

or  

2h for s in ’  E >>-  
r 

and thus 

R r r l = - % ( .  s i n  4 E t- 2h s in ’  E ) C O S E  

h’ 

2h valid for s i n 2  E > > - 
r 

For s i n  E = 0 

19 



we find 

111 R = - r  

The maximum of R"' i s  found from Equation (A-9) 

Estimation of lRLVl and lRVI 

Differentiating (A-3) two more times with respect to B yields 

I 111 3(R'1)2 t 4 R  R t RR'" = - r ( r  t h) C O S  B 

10 R"R"'t 5R'RrV RR" = r ( r  t h) s i n  B 

Rrv has extreme values for RV = 0. From Equation (A-1) and 
for RV = 0 

10 R" R"'+ SR'R'" = RR' 

Substituting R"' from Equation (A-4) yields 

- i o  RI RII (1 + 35) + W R N  = RR' 

20 

4- we c 

(A-10) 

(A-11) 

(A-12) 

:A - 13) 

(A-14) 

ta in 

(A-15) 



A * ,  , 

b 

1 

* a  
Equation (A-15) has two roots 

7 

o r  

e = o  

- 10 RI' (1 t 3 g) + 5 R" = R 

For R1 = 0 we obtain from Equation (A-13) 

IV R =  - 3  (R")2 - r2 - r h  
R 

and thus 

r4 r2  

h3 
lRIVlmaxl  = 3- t - t r 

After elimination of R" between Equation (A-13) and (A-17) we obtain 

or 

(A-16) 

(A-17) 

(A-18) 

(A-19) 

21 



From 
? 

and 

r3 IR"'I 5 0.86  - 
h2 

we find that 

r4 (R'V~,ax 5 2.29 - 
h3 

if lower order terms of h/r are neglected. 
and again neglecting lower order  te rms  we thus have 

lRrVlmax is larger than IRrVlmax 

r4 

h3 
lRIYlmax 1 = IRrVlmax 5 3 - (A-20) 

Because of the complex nature of the equations we will establish an upper bound 
for lRVl rather than deriving the exact expressions. From Equation (A-1) and 
(A-14) we obtain 

Using Equation (A-5) and (A-11) we find 

lRVl 23.6,  r5  

h4 

neglecting the lower order  terms of h/r. 

22 

(A-21) 



APPENDIX II 

Three Point Correction 

Expand R in a Taylor ser ies  around to, including up to fifth order terms: 

1 1 1 ... 
R ( A t )  = R ,  + R o A t  + - - R o A t 2  1 .. + -  R , A t 3  +--:At4 +--:Ats + . . a  

2 .  3 !  4 !  5! 

The derivativis a r e  

R ( A t )  = R, + R , A t  + -  1 ... R o A t '  +--:At3 1 + - 1 R: A t 4  t - - - (A-22) 
4 !  2 !  3 !  

1 1 (A-23) R: A t 3  
2 !  3.  

... 
R ( A t )  = R, + R o A t  + - R i " A t 2  + 

1 
2 !  

... 
R ( A t )  =KO +R:At + -  R:At2 

R'"(At) = RY + RV, A t  

R V ( A t )  = R: 

Fo r  the first measuring interval, see  Figure 4 we have 

(A-24) 

(A-25) 

(A-26) 

R (- T, ti) - R (- T, -3 
R a l  = T 

23 



l and thus 

(A-28) * 1 T2 1 v T4 fi = R , + - ; . R o q + - R  - 
a 2  3 .  5 !  16 

T4 (A-29) 1 ... T2 1 
3 .  4 5 !  Ra, = R(Tl) t 7 R (T ) - t - Rv(Tl) 16 

R(*Tl), R ( k T J  and RV(*Tl) can be expressed in R,, ... R, etc. with the aid of 

Equation (A-22) through (A-24) by putting A t  = *TI. Solving for R o ,  R,  and R, 
we obtain 

1 ... io = ka2 -- T2 R, - - T 4 R i  
4! 16.5 ! 

.. RaJ 4 1  -- 1 (T: t:) RrV R, = 
2 %  3 !  

... Ra, - 2 R a 2  t Ral  1 

T: 
R, = - - (2T: + T2) RE 

4! 

i 

I 

and in the same manner 

24 

(A-27) 

(A-30) 

(A-32) 



* 
* r  

6 Substitution into Equation (A-22) yields . 4 .  

s -. 

.. 

T: 2 4 T f  
A t 2  A t  

A t 2  A t  T2 * 

+ (F+T-q)Ra3 
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